2017年09月26日 星期二
 
室内新闻
室内研究进展
科研快讯
通知公告
科研快讯 当前位置:实验室新闻 >> 科研快讯
 
【Nature 等】帮助中国小农户缩小产量差距 等
发布时间:2016-10-11  来源:土壤与农业可持续发展国家重点实验室  浏览:456

【帮助中国小农户缩小产量差距】Weifeng Zhang, Guoxin Cao, Xiaolin Li, Hongyan Zhang, Chong Wang, Quanqing Liu, Xinping Chen, Zhenling Cui, Jianbo Shen, Rongfeng Jiang, Guohua Mi, Yuxin Miao, Fusuo Zhang & Zhengxia Dou. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (29 September 2016) doi:10.1038/nature19368

Abstract

ustainably feeding the world’s growing population is a challenge1, 2, 3, and closing yield gaps (that is, differences between farmers’ yields and what are attainable for a given region)4, 5, 6 is a vital strategy to address this challenge3, 4, 7. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape4, 7. Many factors and constraints interact to limit yields3, 4, 5, 6, 8, 9, 10, and progress in problem-solving to bring about changes at the ground level is rare. Here we present an innovative approach for enabling smallholders to achieve yield and economic gains sustainably via the Science and Technology Backyard (STB) platform. STB involves agricultural scientists living in villages among farmers, advancing participatory innovation and technology transfer, and garnering public and private support. We identified multifaceted yield-limiting factors involving agronomic, infrastructural, and socioeconomic conditions. When these limitations and farmers’ concerns were addressed, the farmers adopted recommended management practices, thereby improving production outcomes. In one region in China, the five-year average yield increased from 67.9% of the attainable level to 97.0% among 71 leading farmers, and from 62.8% to 79.6% countywide (93,074 households); this was accompanied by resource and economic benefits.


【植物中的非生物胁迫信号与响应】Zhu Jian-Kang. Abiotic Stress Signaling and Responses in Plants. Cell, Volume 167, Issue 2, p313–324, 6 October 2016

Abstract

As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.


【全球化石燃料甲烷排放量上调】Stefan Schwietzke, Owen A. Sherwood, Lori M. P. Bruhwiler, John B. Miller, Giuseppe Etiope, Edward J. Dlugokencky, Sylvia Englund Michel, Victoria A. Arling, Bruce H. Vaughn, James W. C. White & Pieter P. Tans. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91 (06 October 2016) doi:10.1038/nature19797

Abstract

Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions1, 2, 3, 4, 5, 6, 7, 8, 9, 10 to the total atmospheric methane budget11. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage12, 13, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates1, 2, 3, 4, 5, 6, 7, 8, 9, 10 owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage12, 13, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories1, 2. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.


Caren Change, John L. Bowman, Elliot M. Meyerowitz. Field Guide to Plant Model Systems. Cell Volume 167, Issue 2, p325–339, 6 October 2016

Abstract

For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.


【冻土生态系统与碳排放】Christina Schädel, Martin K.-F. Bader, Edward A. G. Schuur, Christina Biasi, Rosvel Bracho, Petr Čapek, Sarah De Baets, Kateřina Diáková, Jessica Ernakovich, Cristian Estop-Aragones, David E. Graham, Iain P. Hartley, Colleen M. Iversen, Evan Kane, Christian Knoblauch, Massimo Lupascu, Pertti J. Martikainen, Susan M. Natali, Richard J. Norby, Jonathan A. O’Donnell, Taniya Roy Chowdhury, Hana Šantrůčková, Gaius Shaver, Victoria L. Sloan, Claire C. Treat Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change 6, 950–953 (2016) doi:10.1038/nclimate3054

Abstract

Increasing temperatures in northern high latitudes are causing permafrost to thaw1, making large amounts of previously frozen organic matter vulnerable to microbial decomposition2. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions3, 4 that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear5, 6. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10°C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.

关闭本页
 
在线评论
*
*
   
·没有相关评论...

 

Copyright © 2011 版权所有:中国科学院南京土壤研究所 苏ICP05004320-6
电话/传真;025-86881028 地址:南京市玄武区北京东路71号 邮编:210008